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ABSTRACT
Releases of airborne contaminants in or near a building
can lead to significant human exposures unless prompt
response measures are taken. However, possible responses
can include conflicting strategies, such as shutting the
ventilation system off versus running it in a purge mode
or having occupants evacuate versus sheltering in place.
The proper choice depends in part on knowing the source
locations, the amounts released, and the likely future
dispersion routes of the pollutants. We present an ap-
proach that estimates this information in real time. It
applies Bayesian statistics to interpret measurements of
airborne pollutant concentrations from multiple sensors
placed in the building and computes best estimates and
uncertainties of the release conditions. The algorithm is
fast, capable of continuously updating the estimates as
measurements stream in from sensors. We demonstrate
the approach using a hypothetical pollutant release in a
five-room building. Unknowns to the interpretation algo-
rithm include location, duration, and strength of the
source, and some building and weather conditions. Two
sensor sampling plans and three levels of data quality are
examined. Data interpretation in all examples is rapid;
however, locating and characterizing the source with
high probability depends on the amount and quality of
data and the sampling plan.

INTRODUCTION AND MOTIVATION
Airborne contaminant releases in or near a building can
lead to significant human exposures unless prompt re-
sponse measures are taken. However, possible responses

can include conflicting strategies, such as shutting the

ventilation system off versus running it in a purge mode

or having occupants evacuate versus sheltering in place.
The proper choice depends in part on knowing the source
locations, the amounts released, and the likely future
dispersion routes of the pollutants. Determining this in-
formation is complicated by the complex nature of air-
flows typically found in multi-room, multi-floor build-
ings. For example, merely detecting an airborne pollutant
from sensors placed in the building may not reveal the
location or strength of the source. The sensor measure-
ments must be interpreted to estimate the source charac-
teristics and quantify the uncertainties. For effective
decision-making, the measurements must also be inter-
preted quickly and continuously as data stream in from
the sensors.

Traditional algorithms for data interpretation gener-
ally use an inverse modeling approach (e.g., optimization
and Gibbs sampling) to fit an indoor airflow and pollutant
transport model to measurements of airborne pollutants.
The fit is usually achieved by iteratively adjusting model
input parameters until they reasonably predict the data.
For online, real-time sensor data interpretation, these ap-
proaches are too slow. They (1) wait to execute computa-
tionally intensive fate and transport models until data are
first obtained, (2) execute the models repeatedly as new or
successive sensor data become available, and (3) require a
considerable amount of data before the algorithm finds a
unique solution or estimates the uncertainty in the cali-
brated parameters. Finally, the computational burdens
required by these algorithms can be so great that using
them for pre-event planning, such as to determine opti-
mal monitoring locations, sampling plans, and sensor
performance criteria, can be excessively cumbersome.

Many of these problems can be solved using a tech-
nique called Kalman filtering.1 It is well-suited for many
sensor interpretation applications and has been success-
fully applied, for example, to estimate the source strength
of pollutant releases in multizone buildings.2 However,
Kalman filtering is best used for linear systems with well-
conditioned input-to-output parameter covariance matri-
ces and strong observability between the internal-state

IMPLICATIONS
This article presents and demonstrates an algorithm for
interpreting multiple sensor measurements in real time. It
may be used to characterize an unexpected pollutant re-
lease in or near a building. It may also be used to optimally
place sensors, operate them, and determine their optimal
performance criteria, including tradeoffs between sensitiv-
ity, reset time, and cost.
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variables (e.g., the model input parameters of an indoor

airflow and pollutant transport model) and the model

outputs (e.g., concentration predictions).1 Many fate and
transport phenomena, such as second-order pollutant
degradation, density-driven pollutant transport, aerosol
coagulation, and second-order pollutant diffusion in
sorption-desorption, are not linear. Furthermore, wide
uncertainty bounds exist for several of the model inputs,
such as many possible source locations, amounts released,
durations of releases, and heating, ventilation, and air
conditioning (HVAC) operating conditions. These will
invariably lead to ill-conditioned covariance matrices and
poorly observable systems. Although many nonlinear
models may be linearized using an extended Kalman fil-
tering technique,3 the technique requires considerable
tuning and adjustments because of the linear approxima-
tions.

Finally, Kalman filtering is not well-suited for the
uncertainty analyses required for effective decision anal-
ysis. Kalman filtering may be applied to estimate the most
likely source location and uncertainty (e.g., “The source is
in room ‘A’ with 80% probability”). It is, however, con-
siderably more computationally intensive, and thus time-
consuming, to concurrently estimate the uncertainties of
other less likely source locations (e.g., “The source is in
room ‘A’ with 80% probability, in room ‘B’ with 18%
probability, and in room ‘C’ with 2% probability”).

We present an alternative algorithm that uses Bayes-
ian statistics. This approach succeeds where traditional
methods fail because it decouples the simulation of pre-
dictive fate and transport models from the interpretation
of measurements, and incorporates uncertainty analysis
in all parts of the framework. Thus, we can compute the
time-consuming airflow and pollutant transport predic-
tions and uncertainty estimates—without requirements
on linearity of the models—before a pollutant release
event and interpret sensor data in real time during an
event. The technique may be used to estimate the loca-
tion, magnitude, and duration of the release, to charac-
terize any unknown or variable building or weather con-
ditions, and to predict future pollutant transport in the
building. Initial estimates are provided as soon as a sensor
detects a pollutant and can be updated as each new mea-
surement arrives.

The techniques we introduce are not new; often
termed “Bayes Monte Carlo updating,” it has been ap-
plied to assess environmental health risk,4–6 analyze
groundwater monitoring data,7–9 and conduct environ-
mental value-of-information analyses.10,11 However, the
research problems described in these articles are distinct
from the current work in one important feature. They
describe applications to interpret data well after they were
collected, when interpretation and response were not

time-critical. In the present work, we exploit a feature of
Bayes Monte Carlo updating that has not, to our knowl-
edge, been previously recognized: Modeling and data
analysis can be decoupled, which allows for data to be
interpreted while they stream in during a pollutant re-
lease event. This is a significant advance over previous
uses of Bayes Monte Carlo methods. Furthermore, appli-
cation of this general approach to indoor air pollutant
source characterization and airborne pollutant transport
predictions has not, to our knowledge, been reported in
the literature.

The objectives of this article are thus to present a
Bayesian algorithm for interpreting sensor data in real
time, and demonstrate the approach by successfully de-
tecting and characterizing a pollutant release in a hypo-
thetical five-room building. In the illustrative application,
we generated synthetic data for two data collection sce-
narios: (1) concurrent sampling, in which sensor measure-
ments are obtained simultaneously in each of the five
rooms at 5-min intervals; and (2) sequential sampling, in
which sensor measurements are obtained sequentially,
one room at a time, at 5-min intervals. We also generated
high-, medium-, and low-quality data for each of the two
data collection scenarios to examine degradation of the
predictive results with increasingly noisy data. In addition
to unknowns regarding the location, duration, and mag-
nitude of the pollutant release, other unknowns included
the outside temperature and whether certain doors or
windows were open or closed. Finally, interpreting data
for several sampling plans and qualities of data demon-
strates the ease of exploring and comparing the tradeoffs
among sensor features, such as frequency of sampling,
sensor sensitivity, and number of sensors.

APPROACH
The Bayesian data interpretation approach is divided into
two stages. First, in the pre-event or simulation stage, the
practitioner selects a fate and transport model, builds a
computer model of the building, characterizes uncertain-
ties of the model inputs, and simulates many hypotheti-
cal airflow and pollutant transport scenarios. These time-
consuming tasks are completed before a pollutant release
occurs. In the second stage, during a pollutant release
event, the agreement between each of the model simula-
tions and sensor data is evaluated using a technique called
Bayesian updating.5,9 This stage is quick and is conducted
as data stream in from the sensors.

Pre-Event Planning
Before a release event, the practitioner develops a model
of the building’s indoor airflow and pollutant transport.
Best estimates for model inputs are generated from, for
example, previous building characterization exercises,
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tracer gas flow experiments and modeling, published lit-
erature, and professional judgment. Any uncertain model
input parameter or variable building characteristic is as-
signed an uncertainty distribution that describes the
probabilistic range of possible values. Pollutant descrip-
tion uncertainties, such as the location, duration, and
amount of pollutant released in an incident, are also
assigned uncertainty distributions. In general, wide distri-
butions are assigned because of limited prior information,
particularly for describing the pollutant characteristics.

The practitioner next generates a library of model
simulations by sampling the distributions of the model
input parameters using a Monte Carlo or other sampling
technique and predicting airflow and pollutant transport
for each set of parameters. Each model simulation repre-
sents a possible building configuration and pollutant re-
lease scenario. At this stage, each simulation is equally
likely to occur. Thus, sufficient sampling of the uncer-
tainty distributions is essential to represent the full range
of possible building and pollutant release characteristics.
One method for testing sufficiency of sampling is by
increasing the sample size until changes in summary sta-
tistics (e.g., means, variances, coefficients of variation) of
model predictions are negligible. The resulting library of
simulations may consist of several thousand scenarios.
Because this stage is not time-critical, a large library of
simulations is not difficult to develop with the advances
of fast personal computers and inexpensive data storage
devices.

It is important that the parameter ranges sampled in
the uncertainty characterization and Monte Carlo sam-
pling are wide enough to contain the parameter values of
the actual event (to be diagnosed in real time). Otherwise,
the method will fail to converge on the correct parameter
values. Of course, such failure still provides some useful
information; for example, the actual event parameters are
not within the ranges sampled, or there is a model-misfit
to the actual event.

During Event Data Interpretation
During a release event, the algorithm compares data
streaming in from sensors to each realization in the li-
brary of model simulations using a structured probabilis-
tic method referred to as Bayesian updating. Bayes’ rule
allows the practitioner to quickly estimate and update the
level of agreement between the observed data and model
simulations (i.e., the pollutant transport predictions). To
summarize the process, the practitioner compares each
realization in the library to the data to assess the likeli-
hood that the realization describes the event in progress.
A model simulation with predictions that fit the sensor
data well will have a high likelihood estimate. This in
turn suggests that the model inputs used to generate

that realization in the pre-event simulation stage have a
high probability of describing the event in progress. By
comparing the relative fits for each realization using
Bayesian statistics, the practitioner estimates the best-
fitting suite of model inputs and the associated uncer-
tainty.

The difference between the data and the predictions
resulting from measurement error, spatial and temporal
averaging or correlations, and imperfect model represen-
tation are all considered when estimating the data-to-
model agreement. The probability of each model simula-
tion before and after assessing the agreement is termed
the prior and posterior probability, respectively.

The posterior probability of the kth Monte Carlo sim-
ulation making prediction Yk given the sensor measure-
ments O is denoted as p(Yk�O). Using Bayes’ rule, p(Yk�O) is
calculated using eq 15

p�Yk�O� �
L�O�Yk�p�Yk�

�
i�1

K L�O�Yi�p�Yi�
(1)

where p(Yk�O) is the posterior probability, L(O�Yk) is the
likelihood of observing measurements O given model pre-
diction Yk, p(Yk) is the prior probability of the kth Monte
Carlo simulation, and K is the number of Monte Carlo
simulations. Before data comparison, each of the model
realizations is usually assumed to be equally likely (i.e.,
p(Yk) � 1/K).

The posterior probability, p(Yk�O), describes the prob-
ability of all of the model assumptions and predictions
associated with the kth realization. Thus, the prior uncer-
tainty of each model input parameter (e.g., source loca-
tion or building characteristic) and model output (e.g.,
airborne concentration prediction) is updated according
to how well model predictions in the prior uncertainty
distribution agree with the sensor data. The updated
mean, variance, and correlation coefficient of each model
input parameter and output are calculated using eqs 2–4,
respectively5

��V � �
i�1

K

Vi � p�Yi�O� (2)

��V
2 � �

i�1

K

�Vi � ��V�2 � p�Yi�O� (3)

��V,W �

�
i�1

K �Vi � ��V��Wi � ��W� � p�Yi�O�

��V � ��W
(4)
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where V and W represent any model input or output.
The likelihood function, L(O�Yk), in eq 1 quantifies

the error structure of the data—that is, the differences
between the data and the model predictions resulting
from measurement error, spatial and temporal averaging
or correlations, and imperfect model representation. If
many independent measurements are considered, for ex-
ample, following sequential concentration measurements
returned from sensors or from concurrent measurements
sampled in several locations, the likelihood of observing
all of the measurements is the product of all of the indi-
vidual likelihoods

L�O�Yk� � �
s � 1

S

L�Os�Ys,k� (5)

where S is the number of independent measurements.
For unbiased measurements with a normally distrib-

uted error, the likelihood of observing a sensor measure-
ment, Os, given a model prediction, Ys,k, is given as

L�Os�Ys,k� � f�Os � Ys,k� �
1

�ε�2�
exp�	

1
2 �Os � Ys,k

�ε
�2� (6)

where Os is the concentration measured by a sensor in a
room at t � ts, Ys,k is the airborne concentration predicted
from the kth Monte Carlo realization that corresponds to
Os, and �ε

2 is the error variance of the measurements. The
error variance, �ε

2, describes not only the error in the
sensor instruments but also the error associated with com-
paring model predictions with sensor measurements hav-
ing different spatial and temporal averaging.

Although a Gaussian likelihood function, appropriate
for independent normally distributed errors, is commonly
applied by researchers in various environmental applica-
tions as in eqs 5 and 6,4,5,9,11 it assumes an error structure
that is inappropriate when errors in the data are corre-
lated.9 For example, the sensors may have a calibration
bias that causes all of the measurements to under- or
over-report the concentrations. Sohn et al. discuss alter-
native methods for estimating likelihood functions in
these cases.9 However, for the purposes of our illustrative
application, we assumed that the measurement errors
were uncorrelated and could be described by a Gaussian
likelihood function, although alternatives can be readily
implemented.

The second stage of the approach is mathematically
simple and can be executed very quickly, much more
quickly than the rate at which new data are likely to arrive
from sensors.

ILLUSTRATIVE APPLICATION
We applied our approach to locate and characterize a
hypothetical pollutant release in a five-room building.

Uncertainties in source location, duration, and amount,
and in some building characteristics, were estimated and
updated using synthetic data.

The subsections of this article describing the pre-
event planning consist of a description of the five-room
building, the uncertainty characterization of model input
parameters, and the airflow and pollutant transport pre-
dictions. A description of the synthetic data follows. Data
interpretation during an event is described next. Then,
several examples of rapid data interpretation are discussed
for various scenarios of data sampling and data quality.

Building Description
The study building is a single-story building comprising
three rooms, a common area (CA), and a bathroom (Fig-
ure 1). Each of the partitioned areas is treated as a well-
mixed zone. The zones connect to the outside via win-
dows and doors and interconnect via internal doors. The
building does not have an HVAC system.

The interior door between the CA zone and Room 1 is
open, as are the windows in the bathroom and Room 2.
The status of one of the CA zone windows and the door
between the CA zone and Room 3 is unknown (for example,
owing to failed position sensors at these locations). These
are denoted in Figure 1 with question marks. All other win-
dows and doors are closed. Wind blows at a steady 3 m/sec
on the exterior wall shared by the CA zone and Room 1. The
temperatures of the rooms are indicated in Figure 1, and the
outside temperature is unknown (see Table 1).

Table 1 summarizes the uncertainties in the source
and building characteristics. Although the uncertainty

Figure 1. Plan of the five-room building. The arrows represent windows
or doors; the question marks indicate uncertain open or closed status.
The windows in the bathroom and Room 2 and the interior door for
Room 1 are open. All other windows and doors are closed. The wind
blows at a steady 3 m/sec.
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distributions were assumed to be wide, we did not pre-
sume to capture the full extent of the building variability.
For this illustrative application, the uncertainties were
limited to only some aspects of the pollutant and building
characteristics. Nevertheless, they demonstrate the types
of uncertainty that can be estimated simultaneously from
the data.

Airflow and Pollutant Transport Simulation
We selected the COMIS model to predict indoor airflow
and pollutant transport.12 COMIS predicts the steady-
state flows of air and the dynamic transport of pollutants
by representing the building as a collection of well-mixed
zones. Air flows between zones via cracks, doors, and
windows (and also fans and ductwork, although those
features were not used here). COMIS assumes air to be
incompressible and calculates airflow through these path-
ways based on pressure differences across them, induced
by wind and thermal buoyancy. The model calculates

dynamic pollutant transport assuming that the pollutant
transports at the same rate as air. COMIS has been used to
predict airflow and gas transport in multi-story, low- and
high-rise residences,13,14 small office buildings,15 con-
trolled experimental test houses,16 and single-family
houses.17 Although we selected a multizone modeling
approach for this application, our data interpretation al-
gorithm may be used with any suitable indoor airflow and
pollutant transport model.

As part of the pre-event planning, we generated a
library of airflow and pollutant transport simulations by
sampling the uncertainty distributions describing the
source and building characteristics (Table 1). Five thou-
sand air flow and pollutant simulations, each of them
equally likely, were generated using Latin Hypercube sam-
pling techniques.18 Means and variances for several sam-
ple sizes were tested to ensure that 5000 simulations ad-
equately sampled the problem solution space.

Figure 2 shows an example of one of the simulations.
A pollutant was released in the CA zone for 17 min at 3.4
g/min. The high concentrations in Room 1 result from
the high airflow through the open door to the CA zone.
The lower concentrations in Rooms 2 and 3 and the
bathroom result from closed interior doors and infil-
tration/exfiltration with the outside. Figure 3 shows the

Figure 2. Simulation of a 57-g, 17-min release in the CA zone (steady
release rate). The outside temperature is 12.7 °C. The interior tempera-
tures are shown in Figure 1. The windows in the bathroom and Room 2
and the Room 1 interior door are open. All other windows and doors are
closed.

Figure 3. Concentration prediction in the CA zone before data inter-
pretation. The gray area is the 90% confidence interval from 5000 sim-
ulations of pollutant releases and building characteristics. The dotted line
is the median prediction.

Table 2. Two-part error structure used to generate the synthetic data.

Data Quality Coefficient of Variation Random Error, � (g/m3)

High 0.05 0.005

Medium 0.1 0.01

Low 0.5 0.05

Table 1. Uncertainty in the source and building characteristics before data

interpretation.

Parameter Range Distribution

Source location Any room Equiprobable

Total mass released 5–100 g Uniform

Release duration 5–20 min Uniform

Outside temperature 10–25 °C Uniform

Room 3 door positiona Open or closed Equiprobable

Common area window positiona Open or closed Equiprobable

aThe door and window are identified on Figure 1.
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confidence interval for the predicted pollutant levels in
the CA zone based on all of the realizations. Not knowing
the pollutant release characteristics or some of the build-
ing conditions results in highly uncertain airborne con-
centration predictions. The uncertainty bounds will be
reduced as data are interpreted during an event.

Description of Synthetic Data
We generated synthetic data to represent measurements
that might stream in from air monitoring sensors placed
in the building. The synthetic data were based on an
airflow and pollutant transport simulation represent-
ing a possible pollutant release event. Figure 2 plots the

Table 3. Updated source and building uncertainties. The Answer row lists the values used to generate the synthetic data. The Prior row is before any data interpretation.

Concurrent sampling draws a measurement from all rooms every five minutes. Sequential sampling draws a measurement sequentially one room at a time in the order: (1) CA at

t � 5 min. (2) Room 1 at t � 10 min. (3) Room 2 at t � 15 min. (4) bathroom at t � 20 min. (5) Room 3 at t � 25 min. and (6) CA at t � 30 min.

Time (min)
Data

Quality

Total Mass
(g)

Release
Duration (min)

External Temp.
(�C)

Probability of
CA Window

Closed

Probability of
Room 3 Door

Closed� � � � � �

Answer — 57 — 17 — 12.7 — 100 100

Prior — 53 27 12.5 4.3 17.5 4.3 50 50

Concurrent Sampling
5 high 47 14 13.2 3.9 14.3 2.9 100 100

medium 40 13 13.6 4.3 15.4 2.9 100 100

low 34 23 14.0 4.0 15.1 2.9 42 53

10 high 54 10 15.1 2.9 13.0 2.6 100 100

medium 46 10 14.8 3.1 14.9 3.1 100 100

low 32 18 14.0 4.1 15.3 2.9 49 57

15 high 56 8 15.6 2.5 12.2 2.1 100 100

medium 47 7 15.6 2.6 13.4 2.8 100 100

low 41 16 14.4 3.7 15.4 2.9 80 73

20 high 59 7 17.0 0.1 11.9 1.9 100 100

medium 53 3 18.4 1.4 14.0 2.5 100 100

low 47 13 15.0 3.3 15.4 3.0 97 92

25 high 59 0.2 17.0 0.1 11.9 0.1 100 100

medium 54 1 19.3 0.9 14.1 1.6 100 100

low 49 10 15.5 3.1 15.8 2.9 100 100

30 high 59 0.3 17.0 0.1 11.9 0.1 100 100

medium 53 1 18.6 1.0 12.8 1.3 100 100

low 47 9 15.0 3.2 15.5 2.9 100 100

Sequential Sampling
5 high 67 20 11.0 4.2 15.3 2.8 63 44

medium 63 22 11.6 4.2 15.1 2.8 66 43

low 52 27 12.7 4.3 15.0 2.9 51 48

10 high 67 18 12.5 4.3 15.1 2.9 51 46

medium 59 21 12.5 4.3 15.0 2.9 59 40

low 48 27 13.0 4.3 15.0 2.9 50 47

15 high 57 13 12.1 4.4 16.0 2.8 80 35

medium 57 21 12.2 4.3 15.0 2.8 77 40

low 48 26 12.8 4.4 15.1 2.9 49 44

20 high 56 13 13.8 4.0 16.5 2.6 100 38

medium 53 20 13.8 4.0 14.9 2.8 91 34

low 43 25 12.2 4.3 14.9 2.9 45 44

25 high 57 8 15.4 2.0 13.1 2.1 100 100

medium 46 10 15.7 3.7 13.3 2.3 97 100

low 36 24 11.6 4.2 14.9 2.9 30 47

30 high 59 4 16.7 1.0 13.1 1.7 100 100

medium 46 5 16.5 1.8 12.5 1.8 100 100

low 35 23 11.6 4.2 14.9 2.9 40 50
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simulation from which the synthetic data were generated,
and Table 2 summarizes the model input information.
The simulation was excluded from the library of 5000
simulations describing the prior pollutant concentration
predictions.

We added measurement error to the model simulation
using a two-part error structure: (1) a normally distributed
error associated with a standard deviation proportional to
the true value—that is, a fixed coefficient of variation, and
(2) a normally distributed random error independent of the
magnitude of the measurement. Part one of the error struc-
ture represents error associated with the magnitude of the
airborne concentration, and part two represents error caused
by random noise. Thus, the error variance in eq 6 is equal to
the algebraic sum of the two-part errors at each sampling
time. More complex errors, such as lognormal error struc-
tures, temporally or spatially correlated measurement errors,
or errors caused by incomplete mixing in the room, were
not used, though they can often occur. Many statistical
methods for handling these error structures are available
and can be used in place of eq 6.9,19

We generated high-, medium-, and low-quality syn-
thetic data with progressively larger magnitudes of error
components in the error structure. If adding the error
generated a negative value for the pollutant concentra-
tion, the simulated measurement was set to zero. Table 3
summarizes the error components for the three levels of
data quality, and Figure 4 shows the synthetic data in the
CA zone. As expected, the high-quality data (Figure 4a)
show a more consistent pollutant concentration time se-
ries than do the low-quality data (Figure 4c).

Data Interpretation
The data interpretation algorithm presented in the “Ap-
proach” section allowed us to easily evaluate alternative
data gathering plans without re-running the computa-
tionally intensive fate and transport models. Thus, along
with the three levels of data quality (described in the
synthetic data section), we also evaluated two different
plans for data collection. In the first, concurrent sam-
pling, we obtained sensor measurements from all five
zones simultaneously at 5-min intervals. In the second,
sequential sampling, we obtained sensor measurements
sequentially, one zone at a time, at 5-min intervals. In the
sequential sampling plan, we also examined whether the
sequence of the sampling affected the data interpretation
results. In each application, data interpretation was rapid
and was conducted while data streamed in from the
sensors.

Although we present the results for the various com-
binations of data quality and sampling plans, it is impor-
tant to emphasize that the results merely illustrate the
types of data interpretation and “what-if” analyses that

may be conducted using our interpretation algorithm.
The results do not represent the success or failure of the
interpretation approach. They reveal some of the
tradeoffs between benefits and costs that an end user must
consider when deploying and operating a sensor network.

Data Interpretation Using the Concurrent Sampling Plan. Fig-
ure 5 shows the estimation of the source location for the
three qualities of data. With medium- or high-quality
data, the interpretation correctly identifies the source lo-
cation at the first measurement event (t � 5 min), when
five measurements were obtained. With low-quality data,
the identification of the source location is slower, requir-
ing more measurements to overcome the error in the data.
Table 2 summarizes the results at several sampling times.
Again, the medium- and high-quality data permit dra-
matic uncertainty reductions at t � 5 min, in all cases
converging to the correct answers. The low-quality data,
however, required more data and thus more time.

Data Interpretation Using the Sequential Sampling Plan.
Next, we performed the same estimation with data
obtained using a sequential sampling plan. This plan

Figure 4. Synthetic data representing (a) high-, (b) medium-, and (c)
low-quality measurements in the CA zone and Room 1. The solid lines
represent the model simulation originally used to generate the data.
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gathers data at a significantly slower pace—one data
point every 5 min instead of five. Sequential sampling can
represent a situation where a single (expensive) sensor is
multiplexed to several sampling tubes. The rooms were
sampled in this order: (1) CA zone at t � 5 min, (2) Room
1 at t � 10 min, (3) Room 2 at t � 15 min, (4) bathroom
at t � 20 min, (5) Room 3 at t � 25 min, and (6) CA zone
at t � 30 min. Figure 5 shows the estimation of the source

location. Bearing in mind that the sequential sampling
plan collects five times less data than the concurrent
sampling plan, the medium- and high-quality data do not
locate the source until all of the rooms are sampled once
(t � 25 min), although reasonably good estimates are
generated as early as t � 10 min. The low-quality data
case, however, does not locate the source even after 30
min.

Figure 5. Locating the source using (a) high-, (b) medium-, and (c) low-quality measurements. Concurrent sampling draws a measurement from each
zone every 5 min. Sequential sampling draws a measurement from one room at a time every 5 min in the order given in the text. The probability at t �

0 is before data interpretation.
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Figure 5 also shows that the interpretation algo-

rithm predicts location probabilities of rooms not yet

sampled. For the medium- and high-quality data, at t �

5 min, when the CA zone is sampled, the probability

of Room 2 is nearly zero. The pre-event library con-

tained few simulations where air flowed from Room 2 to

the CA zone because of the wind direction and temper-

ature differences between rooms and between the in-

doors and outdoors. Thus, a pollutant released in Room

2 would not transport to any other room. Because a

nonzero concentration is measured in the CA zone at

t � 5 min, the source must not be located in the bath-

room.

Figure 6 shows the estimated release amount for the

high-quality data set. The gradual reduction of uncer-

tainty was consistent with the 5-fold-less data obtained

at each time step. Table 2 summarizes the estimation of

all of the pollutant and building characteristics.

Though not plotted, the results showing successive im-

provements in the estimates were consistent with the

successive uncertainty reductions illustrated in the
source location estimates (Figure 5) and source amount
estimates (Figure 6).

Finally, we again performed the estimation with
data obtained using a different sequential sampling
plan. The rooms were sampled in this order: (1) Room 2 at
t � 5 min, (2) bathroom at t � 10 min, (3) Room 3 at t �

15 min, (4) CA zone at t � 20 min, (5) Room 1 at t � 25
min, and (6) Room 2 at t � 30 min. The CA zone, where
the source is located, is sampled much later in this se-
quence.

Figure 7 shows the estimation of the source location

under this sampling plan. With the high-quality data, the

source is located after all of the rooms are sampled (t � 25

min), as in the previous sampling sequence. However, the

medium-quality data set poses greater difficulties than
before, and the interpretation of the low-quality data
again fails. This result further supports the importance of
a data interpretation algorithm that is capable of easily
examining alternative sampling plans and qualities of
data. These capabilities are essential for properly design-
ing a sampling plan that balances the effectiveness of

Figure 7. Locating the source using (a) high-, (b) medium-, and (c)
low-quality measurements. Sequential sampling was in the order given in
the text.

Figure 6. Estimating the total mass released by sequentially sam-
pling and obtaining high-quality measurements. Sequential sampling
was in the order given in the text. The uncertainty tails represent the
90% confidence interval, and the circle represents the median pre-
diction. The horizontal line is the value originally used to generate the
synthetic data.
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deploying a monitoring system in a building with the

costs of operating it or selecting the appropriate equip-

ment.

Estimating Pollutant Transport. Along with estimating pol-

lutant and building characteristics, the data interpreta-

tion algorithm also can predict future transport behavior

of the pollutant. Recall that V and W in eqs 2–4 can

represent any input parameter, such as pollutant and

building characteristics, or any output, such as pollut-

ant concentration. Figure 8 shows the predicted concen-

tration profile for the CA zone as high-quality data se-

quentially streams in from the sensors using (1) the CA

zone, (2) Room 1, (3) Room 2, (4) the bathroom, (5) Room

3, and (6) the CA zone sequence. The concentration pre-

dictions before data interpretation—that is, from the

equally weighted original 5000 simulations—are shown

in Figure 2. In Figure 8, at each step of the sampling

sequence, the data interpretation algorithm updates the

best guesses and the uncertainty. Similar to the results for

estimating the source location, the concentration predic-

tions do not show significantly reduced uncertainties

until the CA zone is sampled again at t � 30 min.

Nevertheless, it is remarkable that the posterior median

concentration estimate is already very close to the cor-

rect answer at t � 5 min, when the CA zone is first

sampled. The concurrent sampling plan dramatically

reduced uncertainty at t � 5 min and, therefore, is not

shown.

CONCLUSION
This article presents a Bayes Monte Carlo approach for
interpreting sensor measurements in real time. It may be
used with sensors to characterize an unexpected pollutant
release in or near a building. It may also be used to
optimally place sensors, operate them, and determine
optimal tradeoffs among their performance criteria.

Our data interpretation approach differs from previ-
ous work relating to model parameter estimation by de-
coupling the simulation of airflow and pollutant trans-
port from the interpretation of measurements. This allows
us to divide the analysis into two parts. The pre-event
planning stage completes the time-consuming tasks such
as development of airflow and pollutant transport mod-
els, building description, uncertainty characterization,
and simulation of pollutant transport, and compiles the
scenario simulations into a library of results. The data
interpretation stage is then quickly executed, accessing
this library as data stream in during a pollutant release
event. The decoupled nature of this approach also allows
easy and quick evaluation of alternative sampling plans or
the performance of sensors without re-executing the
time-consuming pre-event stage of the analysis.

We demonstrated the approach by analyzing a hypo-
thetical pollutant release in a five-room building. Data
interpretation estimated the location, total amount, and
release duration of a pollutant, some building conditions,
and future pollutant transport for three different plans for
sensor sampling and three different qualities of measure-
ment data. For each sampling plan, data interpretation
was rapid and was conducted while data hypothetically
streamed in from sensors; however, locating and charac-
terizing the source with high probability depended on the
amount and quality of data available and the sampling
plan.

In future work, we will use our approach to guide
sensor deployment. Decoupling data interpretation from
model evaluation allows a comparison of the perfor-
mance of many hypothetical sensor operating conditions
and sensor locations. Such comparisons could help iden-
tify the requirements for a sensor network, including the
number, sensitivity, and response time of sensors, based
on the desired performance of a data interpretation algo-
rithm in any given building.
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 1

ERRATUM 

 

“Rapidly Locating and Characterizing Pollutant Releases in Buildings,” Sohn, M.D.; Reynolds, P.; Singh, 

N.; and Gadgil, A.J. J. Air & Waste Manage. Assoc. 2002, 52, 1422-1432: In Figures 4a through 4c (page 

1428), the lines identified as “room 1” were mislabeled; they should be labeled “room 2” (see correct 

figure below). We are sorry for any confusion this might have caused the readers. 
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Figure 4. Synthetic data representing (a) high-, (b) medium-, and (c) low-quality measurements in the 

common area zone and room 2. The solid lines represent the model simulation originally used to generate 

the data. 




